We would like to thank the EPSRC for support (DJB) and for funds to purchase the X-ray diffractometer.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the $\mathrm{\Pi UCr}$ (Reference: BM1040). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Coates, G. E. \& Mukherjee, R. N. (1964). J. Chem. Soc. pp. 12951303.

Corker, J. M., Browning, D. J. \& Webster, M. (1996). Acta Cryst. C52, 583-585.
Estermann, M., McCusker, L. B., Baerlocher, C., Merrouche, A. \& Kessler, H. (1991). Nature (London), 352, 320-323.
Hahn, F. E., Schneider, B. \& Reier, F.-W. (1990). Z. Naturforsch. Teil $B, 45,134-140$.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Sofiware. MSC, 3200 Research Forest Drive, The WoodIands, TX 77381, USA.
Molecular Structure Corporation (1992). TEXSAN. Structure Analysis Package, revised edition. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 884-887

Iodotris(triphenylphosphine)silver(I), [$\left.\mathbf{A g}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{I}\right]$

David E. Hibbs, ${ }^{a}$ Michael B. Hursthouse, ${ }^{a}$ K. M. Abdul Malik, ${ }^{a}$ Michael A. Beckett ${ }^{b}$ and Phill W. Jones ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Wales, Cardiff, PO Box 912, Park Place, Cardiff CF1 3TB, Wales, and ${ }^{b}$ Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, Wales. E-mail: sackam@cardiff.ac.uk

(Received II July 1995; accepted 6 November 1995)

Abstract

The geometry about the Ag atom in the title complex, $\left[\mathrm{AgI}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{3}\right]$, is distorted tetrahedral with the $\mathrm{Ag}-\mathrm{I}$ bond length 2.8660 (11) \AA and $\mathrm{Ag}-\mathrm{P}$ distances 2.5335 (14), 2.5589 (12) and 2.6814 (12) \AA. The $\mathrm{P}-\mathrm{Ag}-\mathrm{P} / \mathrm{I}$ angles show large variations [104.54(3)$116.10(4)^{\circ}$] from the ideal tetrahedral value (109.45°).

These distortions, as well as those around the P atoms in the three triphenylphosphine ligands, may be attributed to several intramolecular ($\mathrm{H} \cdots \mathrm{I}$ and $\mathrm{H} \cdots \mathrm{C} / \mathrm{H}$) short contacts.

Comment

A number of tris(triphenylphosphine)silver(I) derivatives of the type $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)_{3} X\right]$ have been characterized by X-ray crystallography: $X=\mathrm{Cl}$ (Cassel, 1981), $X=\mathrm{Cl}, \mathrm{Br}$ or I (Englehardt, Healy, Patrick \& White, 1987), $X=\mathrm{I}, \mathrm{BF}_{4}$ (Camalli \& Caruso, 1987), and $X=\mathrm{NO}_{3}$ (Barron et al., 1986; Bruce \& Duffy, 1986). All these complexes are molecular species, in each of which the Ag atom has distorted tetrahedral geometry. The nitrate derivative is monoclinic and isostructural with the room-temperature (RT) iodide structure reported by Englehardt et al. (1987), with the N atom of the bidentate nitrate group occupying almost the same position as the I atom. In the BF_{4} complex there is one $\mathrm{Ag}-\mathrm{F}$ interaction which is long [2.82 (1) \AA], but it definitely indicates a bonding (albeit weak) interaction. The RT iodide structure reported

(I)
by Englehardt et al. (1987) is monoclinic with one long and two short $\mathrm{Ag}-\mathrm{P}$ bonds [2.780 (3), 2.544 (2) and 2.573 (3) \AA] , while the structure reported by Camalli \& Caruso (1987) is triclinic with the Ag-P bonds falling within a narrow range $[2.572(4)-2.616(3) \AA]$. We undertook an X-ray study of the complex at 140 K (low temperature, LT) to obtain more accurate data and confirm the unusual variations in the reported molecular geometry parameters. The LT structure reported here (Fig. 1) is isostructural with the RT monoclinic form reported by Englehardt et al. (1987).

The Ag^{I} centre is tetrahedral with one $\mathrm{Ag}-\mathrm{P}$ bond [2.6814 (12) \AA] much longer than the other two [2.5335 (14) and 2.5589 (12) \AA]. These values follow the trend observed in the RT monoclinic structure (Englehardt et al., 1987), but in the latter case the longest $\mathrm{Ag}-\mathrm{P}$ bond is $c a 0.10 \AA$ longer than the corresponding value in our structure. The situation is somewhat dif-

[^0]

Fig. 1. Structure of $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right) I\right]$ showing the atom-numbering scheme (C336 is obscured by C312). Displacement ellipsoids are drawn at the 50% probability level. H atoms, represented by small circles of arbitrary radii, have the same numbers as their parents.
ferent in the triclinic form (Camalli \& Curso, 1987) in which all the $\mathrm{Ag}-\mathrm{P}$ distances fall within a narrow range [$2.572(4)-2.616$ (3) A \AA]. The average value for the $\mathrm{Ag}-\mathrm{P}$ bond in the present structure ($2.591 \AA$) compares very well with that in the triclinic form ($2.596 \AA$), but is ca $0.04 \AA$ shorter than in the RT monoclinic structure ($2.632 \AA$; Englehardt et al., 1987). It is also noted that the $\mathrm{Ag}-\mathrm{P}$ distances in all three iodide structures are markedly longer than those in the nitrate [2.525 (1)-2.630 (2), average $2.567 \AA$ (Barron et al., 1986); 2.522 (3)-2.630(3), average $2.568 \AA$ (Bruce \& Duffy, 1986)], chloride [2.520(1)-2.552 (1), average $2.543 \AA$ (Cassel, 1981); 2.558 (5)-2.582 (4), average $2.572 \AA$ (Englehardt et al., 1987)] and bromide $[2.528$ (3)- 2.549 (7), average $2.536 \AA$ (Englehardt et al., 1987)] derivatives. The Ag-I distance of $2.8660(11) \AA$ is very similar to those in the RT monoclinic [2.856 (1) Å (Englehardt et al., 1987)] and triclinic [2.655 (1) and 2.864 (1) \AA (Camalli \& Curso, 1987)] forms.

The P - $\mathrm{Ag}-\mathrm{I}$ and $\mathrm{P}-\mathrm{Ag}-\mathrm{P}$ angles lie in the ranges $104.54(3)-107.86(3)^{\circ}$ (average 106.0°) and $107.91(4)-116.10(4)^{\circ}$ (average 112.6°), respectively. These values are comparable with the corresponding angles [104.03(6)-109.00(6), average $106.7^{\circ} ; 107.00(7)-$ 116.93 (7), average 112.0°] in the RT monoclinic structure (Englehardt et al., 1987), and in both cases the two shorter $\mathrm{Ag}-\mathrm{P}$ bonds subtend the largest P -$\mathrm{Ag}-\mathrm{P}$ angle. In the triclinic form, the $\mathrm{P}-\mathrm{Ag}-\mathrm{I}$ and P -Ag- P angles lie in the ranges 103.8 (1)$109.0(1)^{\circ}$ (average 105.6°) and $110.8(1)-114.1(1)^{\circ}$ (average 112.9°), respectively, the latter showing less variation than those in both the monoclinic structures.

The variations from ideal values (109.4°) are consistent with the 'tetrahedral' coordination about the Ag^{1} centre being trigonally distorted, with the iodo ligand 'axial', and may be explained by the presence of several intramolecular $\mathrm{I} \cdots \mathrm{H}$ short contacts $[\mathrm{I} \cdots \mathrm{H} 122=$ $3.17, \mathrm{I} \cdots \mathrm{H} 212=3.14, \mathrm{I} \cdots \mathrm{H} 312=3.24 \AA$ A. The $\mathrm{P}-\mathrm{C}$ bond lengths vary from 1.814 (4) to 1.846 (4) A (average $1.831 \AA$), which are comparable with those in other related structures. The bond angles at the three P atoms display wide variations with $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles ranging from 100.6 (2) to 105.8 (2) ${ }^{\circ}$ and $\mathrm{Ag}-\mathrm{P}-\mathrm{C}$ angles ranging from 108.7 (1) to $123.6(1)^{\circ}$. The large variations in the $\mathrm{Ag}-\mathrm{P}-\mathrm{C}$ angles are explained by several intramolecular short contacts between different PPh_{3} ligands, the most important of these interactions being $\mathrm{C} 122 \cdots \mathrm{H} 312=2.70, \mathrm{H} 132 \cdots \mathrm{C} 332=2.73$ and $\mathrm{H} 222 \cdots \mathrm{C} 322=2.78 \AA$. The orientations of the three PPh_{3} ligands are the same as in the RT structure with one ligand adopting a skew and two adopting staggered conformations (Englehardt et al., 1987).

The present structure is also very similar to those reported for the triclinic and trigonal forms of $\mathrm{CuI}\left(\mathrm{PPh}_{3}\right)_{3}$, in which the average $\mathrm{P}-\mathrm{Cu}-\mathrm{P}$ angles are 115.0 and 110.3°, respectively, and the $\mathrm{Cu}-X(X=\mathrm{I}, \mathrm{P})$ distances are ca $0.20 \AA$ Ahorter (Barron et al., 1987). It was suggested that the overall geometry of the tetrahedral $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{CuX}$ core including the unequal $\mathrm{Cu}-\mathrm{P}$ distances $[2.327$ (2)-2.362 (3) \AA] is significantly influenced by several intramolecular $\mathrm{H} \cdots \mathrm{C} / \mathrm{H}$ and $\mathrm{H} \cdots X$ short contacts, which also affect the conformational changes within the PPh_{3} ligands. This explanation seems equally suited to the Ag case where close $\mathrm{I} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{C} / \mathrm{H}$ contacts are again apparent.

Experimental

The compound was prepared as colourless crystals, m.p. 446447 K (lit. m.p. 438-443 K; Englehardt et al., 1987) in a manner described for the chloride analogue (Cassel, 1981) by substituting [$\left.{ }^{n} \mathrm{Bu}_{4} \mathrm{~N}\right] I$ for $\left[\mathrm{Et}_{4} \mathrm{~N}\right] \mathrm{Cl}$. Suitable single crystals were grown from a chloroform solution of the complex layered with hexane and left undisturbed overnight. IR bands (KBr , $\left.\mathrm{cm}^{-1}\right) 3048,1584,1478(m), 1310,1155,1091(m), 1025$, 997, 854, 743(s), 694(s), 512(s). ${ }^{31} \mathrm{P}$ NMR (RT, CDCl 3): $\delta=$ -1.18 p.p.m., relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$.

Crystal data
$\left[\mathrm{AgI}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{3}\right]$
$M_{r}=1021.58$
Monoclinic
$P 2_{1} / n$
$a=18.847(3) \AA$
$b=13.715(2) \AA$
$c=17.543(3) \AA$
$\beta=95.93(4){ }^{\circ}$
$V=4510.5(12) \AA^{3}$
$Z=4$
$D_{x}=1.504 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 250

reflections

$\theta=1.84-25.06^{\circ}$
$\mu=1.274 \mathrm{~mm}^{-1}$
$T=140$ (2) K
Parallelepiped
$0.26 \times 0.22 \times 0.20 \mathrm{~mm}$
Colourless
Data collection
Delft Instruments FAST
area-detector diffractom
eter
Collection method: see Pflu
grath \& Messerschmidt
(1989) and Darr, Drake
Hursthouse \& Malik
(1993)
Absorption correction:
refined from ΔF
(DIFABS; Walker \&
Stuart, 1983)
$T_{\min }=0.889, \quad T_{\max }=$
0.997

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0489$
$w R\left(F^{2}\right)=0.1177$
$S=1.011$
6910 reflections
532 parameters
H atoms: riding model
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0764 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=-0.001 \\
& \Delta \rho_{\max }=3.236 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.806 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992,
Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
I	-0.10392 (2)	0.27263 (2)	0.10978 (2)	0.02674 (13)
Ag	-0.00064 (2)	0.19352 (2)	0.22461 (2)	0.02126 (13)
Pl	0.00177 (6)	0.31952 (8)	0.34172 (6)	0.0186 (3)
P2	-0.04150 (6)	0.02193 (8)	0.25713 (6)	0.0180 (3)
P3	0.11810 (6)	0.20491 (8)	0.16940 (6)	0.0183 (3)
C111	-0.0865 (2)	0.3395 (3)	0.3727 (2)	0.0201 (10)
C112	-0.1378 (3)	0.2671 (3)	0.3608 (3)	0.0290 (11)
C113	-0.2040 (3)	0.2775 (4)	0.3855 (3)	0.0351 (13)
C114	-0.2220 (3)	0.3628 (4)	0.4203 (3)	0.0298 (11)
C115	-0.1726 (3)	0.4370 (4)	0.4307 (3)	0.0293 (11)
C116	-0.1050 (3)	0.4262 (3)	0.4075 (3)	0.0267 (11)
C121	0.0239 (2)	0.4432 (3)	0.3128 (2)	0.0217 (10)
C122	-0.0174 (3)	0.4806 (3)	0.2492 (3)	0.0313 (12)
C123	-0.0041 (3)	0.5728 (4)	0.2222 (3)	0.0409 (14)
C124	0.0484 (3)	0.6289 (4)	0.2575 (3)	0.0410 (14)
C125	0.0897 (3)	0.5933 (4)	0.3210 (4)	0.048 (2)
C126	0.0769 (3)	0.5009 (3)	0.3495 (3)	0.0358 (1.3)
C131	0.0594 (3)	0.3047 (3)	0.4327 (2)	0.0209 (10)
C132	0.1292 (3)	0.2807 (3)	0.4301 (3)	0.0262 (11)
C133	0.1763 (3)	0.2706 (3)	0.4965 (3)	0.0275 (11)
C134	0.1507 (3)	0.2836 (3)	0.5674 (3)	0.0281 (12)
C135	0.0805 (3)	0.3065 (4)	0.5711 (3)	0.0384 (13)
C136	0.0342 (3)	0.3165 (4)	0.5042 (3)	0.0338 (12)
C211	-0.1331 (2)	0.0145 (3)	0.2837 (2)	0.0186 (10)
C212	-0.1857 (3)	0.0659 (3)	0.2384 (3)	0.0266 (11)
C213	-0.2566 (3)	0.0577 (4)	0.2530 (3)	0.0327 (12)
C214	-0.2750 (3)	-0.0007 (4)	0.3120 (3)	0.0314 (12)
C215	-0.2228 (3)	-0.0505 (4)	0.3563 (3)	0.0309 (12)
C216	-0.1521 (3)	-0.0439 (3)	0.3422 (2)	0.0251 (10)
C221	-0.0396 (2)	-0.0816 (3)	0.1912 (2)	0.0189 (10)
C222	0.0208 (2)	-0.0948 (3)	0.1524 (2)	0.0213 (10)
C223	0.0246 (3)	-0.1707 (3)	0.1017 (2)	0.0237 (10)
C224	-0.0325 (3)	-0.2360 (3)	0.0888 (2)	0.0220 (10)
C225	-0.0918 (3)	-0.2234 (3)	0.1270 (3)	0.0249 (11)
C226	-0.0961 (2)	-0.1481 (3)	0.1779 (2)	0.0224 (10)
C231	0.0142 (2)	-0.0216 (3)	0.3419 (2)	0.0206 (10)
C232	0.0385 (3)	0.0473 (4)	0.3963 (3)	0.0433 (15)
C233	0.0837 (4)	0.0207 (4)	0.4600 (3)	0.055 (2)

C234	$0.1051(3)$	$-0.0727(4)$	$0.4707(3)$	$0.0426(14)$
C235	$0.0814(3)$	$-0.1416(4)$	$0.4173(3)$	$0.051(2)$
C2366	$0.0369(3)$	$-0.1159(4)$	$0.3536(3)$	$0.0453(15)$
C311	$0.1317(2)$	$0.3107(3)$	$0.1085(2)$	$0.0187(10)$
C312	$0.0836(3)$	$0.3873(3)$	$0.1082(2)$	$0.0244(10)$
C313	$0.0893(3)$	$0.4664(3)$	$0.0599(3)$	$0.0305(12)$
C314	$0.1422(3)$	$0.4689(3)$	$0.0112(3)$	$0.0292(12)$
C315	$0.1905(3)$	$0.3930(4)$	$0.0116(3)$	$0.0298(12)$
C316	$0.1850(3)$	$0.3138(3)$	$0.0597(3)$	$0.0250(11)$
C321	$0.1423(2)$	$0.1039(3)$	$0.1092(2)$	$0.0178(9)$
C322	$0.0930(2)$	$0.0774(3)$	$0.0480(2)$	$0.0222(10)$
C323	$0.1082(3)$	$0.0026(3)$	$-0.0008(2)$	$0.0269(11)$
C324	$0.1713(3)$	$-0.0473(3)$	$0.0115(2)$	$0.0242(11)$
C325	$0.2198(3)$	$-0.0229(3)$	$0.0720(3)$	$0.0250(11)$
C326	$0.2063(2)$	$0.0530(3)$	$0.1207(2)$	$0.0225(10)$
C3331	$0.1925(2)$	$0.2052(3)$	$0.2438(2)$	$0.0201(10)$
C332	$0.1972(2)$	$0.1270(3)$	$0.2953(2)$	$0.0244(10)$
C333	$0.2528(3)$	$0.1207(4)$	$0.3531(3)$	$0.0313(12)$
C334	$0.3034(3)$	$0.1928(4)$	$0.3616(3)$	$0.0335(12)$
C335	$0.2992(3)$	$0.2719(4)$	$0.3132(3)$	$0.0316(12)$
C336	$0.2437(3)$	$0.2781(3)$	$0.2534(3)$	$0.0255(11)$

Table 2. Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$

1-Ag	2.8660 (11)	P2-C231	1.829 (4)
$\mathrm{Ag}-\mathrm{P} 3$	2.5335 (14)	P2-C221	1.834 (4)
$\mathrm{Ag}-\mathrm{P} 2$	2.5589 (12)	P2-C211	1.836 (5)
$\mathrm{Ag}-\mathrm{Pl}$	2.6814 (12)	P3-C331	1.814 (4)
$\mathrm{Pl}-\mathrm{Cl11}$	1.823 (5)	P3-C321	1.829 (4)
$\mathrm{Pl}-\mathrm{Cl} 21$	1.831 (4)	P3-C311	1.835 (4)
$\mathrm{Pl}-\mathrm{Cl} 31$	1.846 (4)		
P3-Ag-P2	116.10(4)	C231-P2-C221	102.3(2)
$\mathrm{P} 3-\mathrm{Ag}-\mathrm{PI}$	107.91 (4)	C231-P2-C211	104.5 (2)
$\mathrm{P} 2-\mathrm{Ag}-\mathrm{Pl}$	113.80 (4)	C221-P2-C211	101.4 (2)
P3-Ag-1	105.69 (3)	C231-P2-Ag	108.73 (14)
$\mathrm{P} 2-\mathrm{Ag}-1$	107.86 (3)	C221-P2-Ag	123.04 (14)
$\mathrm{Pl}-\mathrm{Ag}-\mathrm{I}$	104.54 (3)	C211-P2-Ag	114.84 (13)
Clll-Pl-C121	100.6 (2)	C331-P3-C321	101.4(2)
C111-PI-C131	103.4 (2)	C331-P3-C311	105.8 (2)
C121-P1-C131	102.2 (2)	C321-P3-C311	101.8 (2)
Clll-Pl-Ag	112.42 (14)	C331-P3-Ag	111.88 (15)
C121-Pl-Ag	111.75 (14)	C321-P3-Ag	117.21 (14)
C131-PI-Ag	123.59(14)	C311-P3-Ag	116.9 (2)

H atoms were included in calculated positions (riding model, $\mathrm{C}-\mathrm{H}=0.93 \AA$) with $U_{\text {iso }}$ set at $1.2 \times U_{\mathrm{cq}}$ of the parent C atom. Highest residual electron densities in the final difference map which lie close to the Ag and I atoms are devoid of any stereochemical significance.
Data collection: MADNES (Pflugrath \& Messerschmidt, 1989); further details from Darr, Drake, Hursthouse \& Malik (1993). Cell refinement: REFINE in MADNES. Data reduction: ABSMAD (Karaulov, 1992). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SNOOPI (Davies, 1983). Software used to prepare material for publication: SHELXL93.

We thank the EPSRC for support of the X-ray Crystallography Service at UWC.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KAll49). Copies may be obtained through The Managing Editor, International Union of Crystallography. 5 Abbey Squarc. Chester CHI 2HU, England.

References

Barron, P. F., Dyason, J. C., Healy, P. C., Englehardt, L. M., Pakawatchai, C., Patrick, V. A. \& White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1099-1106.

Barron, P. F., Dyason, J. C., Healy, P. C., Englehardt, L. M., Skelton, B. W. \& White, A. H. (1986). J. Chem. Soc. Dalton Trans. pp. 1965-1970.
Bruce, M. I. \& Duffy, D. N. (1986). Aust. J. Chem. 39, 1691-1695.
Camalli, M. \& Caruso, F. (1987). Inorg. Chem. Acta, 127, 209-213.
Cassel, A. (1981). Acta Cryst. B37, 229-231.
Darr, J. A., Drake, S. R., Hursthouse, M. B. \& Malik, K. M. A. (1993). Inorg. Chem. 32, 5704-5708.
Davies, K. (1983). SNOOPI. Program for Crystal Structure Drawing. University of Oxford, England.
Englehardt, L. M.. Healy, P. C., Patrick, V. A. \& White, A. H. (1987). Aust. J. Chem. 40, 1873-1880.
Karaulov, A. I. (1992). ABSMAD. Program for FAST Data Processing. University of Wales, Cardiff, Wales.
Pflugrath, J. W. \& Messerschmidt, A. (1989). MADNES. Version 11 September 1989. Distributed by Delft Instruments, Delft, The Netherlands.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1996). C52, 887-889

> Tetrakis(3-methylpyridine)-1 $\kappa N, 2 \kappa N,-$ $3 \kappa N, 4 \kappa N$-bis $\left(\mu_{4}\right.$-pentathio)-1:2 $\kappa^{2} S^{1}, 2 \kappa S^{4},-$ $3 \kappa S^{2}, 3: 4 \kappa^{2} S^{5} ; 1 \kappa S^{4^{\prime}}, 1: 3 \kappa^{2} S^{1^{1}}, 2: 4 \kappa^{2} S^{5^{\prime}},-$ $4 \kappa S^{2^{\prime}}$-tetracopper(I) Bis(3-methylpyridine) Solvate

Hongjun Li, ${ }^{a}$ Tianlu Sheng, ${ }^{b}$ Qun Huang ${ }^{b}$ and Xintao $W_{U}{ }^{b}$
${ }^{a}$ Department of Chemisty, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China, and ${ }^{\text {b }}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
(Received 27 March 1995; accepted 17 August 1995)

Abstract

The structure of the title compound, $\left[\mathrm{Cu}_{4}\left(\mathrm{~S}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7}-\right.\right.$ $\left.\mathrm{N})_{4}\right] .2 \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$, consists of a neutral complex molecule $\left[\mathrm{Cu}_{4}\left(\mathrm{~S}_{5}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{4}\right]$ and two 3-methylpyridine solvent molecules. In the neutral complex molecule, the four Cu atoms are in a distorted tetrahedral arrangement. The non-bonding $\mathrm{Cu} \cdots \mathrm{Cu}$ distances in the copper tetrahedron range from 3.281 (1) to 3.948 (1) \AA and the $\mathrm{Cu}-\mathrm{S}$ bond lengths vary from 2.255 (2) to 2.397 (3) \AA.

Comment

In recent years, since remarkably rich photoluminescence has been found in tetranuclear complexes (Kevin,

Chong, John \& Peter, 1991) and the cage-type structure with μ_{3}-S may be potentially used in optical-limiting material (Shi, Ji, Tang, Lang \& Xin, 1994), the synthesis of tetranuclear copper(I)-sulfur clusters has attracted attention. To date, a series of tetranuclear copper(I) clusters have been studied (Hathaway, 1987). Herein, a new tetranuclear copper(I) compound, namely, $\left[\mathrm{Cu}_{4}\left(\mathrm{~S}_{5}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{4}\right] .2 \mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$, (I), is reported.

(I) (MePy = 2-methylpyridine)

The structure of the neutral complex molecule of the title compound is shown in Fig. 1. The neutral molecule is located on a twofold axis which passes through atoms $S(3)$ and $S(6)$. Each Cu atom has distorted tetrahedral geometry and is coordinated by three μ_{3}-S atoms and an N atom from the pyridine ligand. The four Cu atoms are held together by two pentasulfido S_{5}^{2-} groups acting as bridging and chelating ligands.

Fig. 1. ORTEPII view (Johnson, 1976) of the title compound. Displacement ellipsoids are shown at the 50% probability level.

In the title compound, the four non-bonding $\mathrm{Cu} \cdots \mathrm{Cu}$ distances are $3.948(1)\left[\mathrm{Cu}(1) \cdots \mathrm{Cu}\left(1^{\prime}\right)\right]$, $3.312(2)[\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)], 3.281(1)\left[\mathrm{Cu}(2) \cdots \mathrm{Cu}\left(1^{\prime}\right)\right]$ and $3.945(1) \AA\left[\mathrm{Cu}(2) \cdots \mathrm{Cu}\left(2^{\prime}\right)\right]$. The $\mathrm{Cu}-\mathrm{S}$ bond lengths vary from 2.255 (2) to 2.397 (3) \AA. The S-S bond lengths in the two S_{5}^{2-} ions vary from 2.062 (3) to 2.076 (5) \AA. These distances are close to those found

[^0]: (C) 1996 International Union of Crystallography

 Printed in Great Britain - all rights reserved

